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Abstract. From a simplified quantum-well model for a magnetic sandwich, it can be shown that
in the variation of the number of occupied levels with the spacer layers, there exists an intrinsic
periodicity, which leads the Fermi level to oscillate periodically. The intrinsic periodicity does
not depend on the magnetic alignment but only on the quantum-well states themselves. The
oscillation period can be approximately given byT = (1/β) 3

√
πµ‖/(3n0µ⊥), whereµ‖ andµ⊥

are the effective masses of the electron in the lateral and perpendicular directions respectively,β

is the distance between the two neighbouring atomic layers, andn0 is the electron density in the
spacer layers. This makes one speculate that the long periodicity of the oscillatory coupling could
be a result of the intrinsic periodicity, ifµ‖/µ⊥ � 1 and a small s-electron density are assumed.
On the other hand, from the calculated energy bands for a thin film, it is found that the electronic
structure is highly anisotropic, which is in agreement with this assumption. Therefore, it can be
confirmed that the intrinsic periodicity plays an important role in the oscillatory coupling. An
inverse photoemission experiment on Cu(100) films over Co can be explained quite well using
this physical picture.

1. Introduction

The discovery of oscillatory interlayer coupling in a magnetic metallic superlattice [1–4] has
stimulated a great effort to seek its origin experimentally [5–19] and theoretically [20–33].
Historically, a similar effect has been observed as an indirect interaction between a pair of
isolated magnetic impurities embedded in a metal. This has led to the belief that the two
phenomena may have a common origin, the Ruderman–Kittel–Kasuya–Yosida interaction
[26, 34, 35]. However, the big discrepancy in the oscillation period between the theoretical
prediction and the experiment has been a puzzle. Furthermore, inverse photoemission
experiments [14, 18] have shown that it may be caused by the quantum-well states. Thus,
theoretically, how to explain it in terms of the quantum-well states is of interest [22, 33].
According to earlier investigations, from the quantum-well model [22, 33], following the
basic idea of the RKKY mechanism, it is also possible to show that spin-polarized quantum-
well states could lead to the ferromagnetic layers being coupled oscillatorily.

Nevertheless, there exist many important differences between the quantum-well model
and the original RKKY model, as detailed below.
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(1) For a very thin film, there is a quantum-size effect [36]. The electronic structure
itself, which includes the eigenvalues of the discrete quantum-well states, the number of
electrons and the number of occupied levels, may change with the spacer layers. This was
not considered in the previous RKKY theory [26].

(2) The Heisenberg interaction between the neighbouring magnetic atoms prevents the
s–d spin-flip scattering process. Thus, the spin-polarization effect of the ferromagnetic
layers is stronger than that of magnetic impurities, which can lead to bound-electron states
even in a free-electron gas [37].

In [36], the quantum-size effect in a metallic thin film was investigated thoroughly. In
that paper, the authors assumed that the Fermi energy was a constant, as it was in the bulk
and did not change with the thickness of a thin film. They showed that in this case the
electron density would oscillate with the thickness. In the earlier quantum-well model [22],
the quantum-size effect was not investigated, and also a constant Fermi energy was assumed.
In this paper, the quantum-size effect in the oscillatory coupling will be investigated. The
electron density is assumed to be a constant and does not change with the thickness of a
thin film. A new effect, the oscillation of the Fermi surface, will be presented; this can
affect the period of the spin-polarized energy of the multilayers. This effect is found to be
mainly caused by the quantum-size effect, so it is independent of the magnetic alignment
of ferromagnets.

The arrangement of this paper is as follows. In section 2, a simplified quantum-well
model will be introduced. In the following two sections, the intrinsic periodicity of the
Fermi energy with spacer layers will be given. In section 4, the influence of the lattice
potential will be investigated in terms of the energy band theory. In section 5, the inverse
photoemission experiment will be discussed. Finally, some conclusions will be given.

2. A simplified quantum-well model

The magnetic sandwich used here contains two ferromagnets, each having a thicknessc,
which is equivalent toPx/2 monolayers, separated by a metal spacer of thickness 2b, which
is equivalent toLx monolayers. The distance between the two monolayers isβ for both of
the ferromagnets and the spacer.

In the perpendicular direction, the translational symmetry is broken, which makes the
electron energy spectrum different in the two directions. The main differences are as follows.

(1) The boundary conditions of the wave function lead to the discrete energy levels in
the perpendicular direction.

(2) Because of the potential missing from sites outside the surface, the variation of the
electron potential energy in the perpendicular direction is different from that in the lateral
direction. In the latter case, it can be approximately considered as a constant. However, in
the first case, it changes with the location and is higher near the surface than it is in the
middle.

(3) The ferromagnets will further affect the eigenvalues of an electron in the
perpendicular direction through the mismatch of the wave function at the ferromagnet/spacer
interfaces. The energy modification depends on the magnetic alignment and electron spin.
The effect of the ferromagnetic slabs on the electron gas can be attributed to the spin
polarization.

In order to investigate the variation of the electronic structure with the spacer layers and
considering factor (1), a quasi-one-dimensional infinite potential well is used. The width
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of the potential well is equal to the thickness of the sample, 2a = 2b + 2c, equivalent
to Nx monolayers. The perpendicular direction is denoted as thex-direction and the film
surface is in theyz-plane. Considering factor (2),µ‖/µ⊥ � 1 is assumed. For our purpose,
the quantum-size effect will be given more emphasis than the spin-polarization effect. The
ferromagnetic slabs are replaced by two magnetic monolayers, which are located at the
interfaces. The standard s–d interaction Hamiltonian is used and, considering the Heisenberg
interaction between the nearest-neighbouring magnetic atoms, the s–d spin-flip process is
neglected.

The Hamiltonian of a simplified quantum-well model can be written as follows [33]:

Ĥ0 = − h̄2

2µ⊥

d2

dx2
− h̄2

2µ‖

(
d2

dy2
+ d2

dz2

)
(1)

Ĥs−d = ±[V2δ(x + b) + V1δ(x − b)] (2)

whereV1 = −JSz
1β andV2 = −JSz

2β; J is the exchange integral constant;Sz
1 andSz

2 are
the spin operators of the magnetic moments for the ferromagnets on the left- and right-hand
sides respectively; the positive sign is for an electron with spin up and the negative sign is
for an electron with spin down.

The eigenvalue of the Schrödinger equation can be written as

εk = h̄2k2
x/(2µ⊥) + h̄2(k2

y + k2
z )/(2µ‖).

The eigenvalue equations forkx for a ferro- and an antiferromagnetic coupling can be
obtained by a quantum mechanism [33]. For the sake of convenience, they are listed as
follows. For a ferromagnetic coupling, there are two equations, one for even and the other
for odd parity:

coskxa = ∓2µ⊥V1

h̄2kx

cos(kx(a − b)) sinkxb (3)

sinkxa = ∓2µ⊥V1

h̄2kx

sin(kx(a − b)) sinkxb (4)

and for antiferromagnetic coupling:

sin 2kxa =
(

2µ⊥V1

h̄2kx

)2

sin2(kx(a − b)) sin 2kxb (5)

where the negative sign is for spin up and the positive sign for spin down.

(1) Because|2µ⊥V1/(h̄
2kx)| � 1, the eigenvalues can be separated asεn,σ = ε0

n+1εn,σ ,
whereε0

n is the unperturbed one and1εn,σ is the spin-polarized one.
(2) For a ferromagnetic alignment,εn,↑ is different fromεn,↓. This makes the electron

level split, and the gap is proportional toV1, which is given by

1εn,↑ ≈ 2V1

a
sin2 cnπ

2a

1εn,↓ ≈ −2V1

a
sin2 cnπ

2a
n = 1, 2, . . ..

(6)

(3) For an antiferromagnetic coupling, the modification is independent of spin, which
can be expressed as

1εn ≈ 8µ⊥V 2
1

h̄2nπ
sin3 cnπ

2a
cos

cnπ

2a
n = 1, 2, . . .. (7)
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(4) The spin-polarized energy which depends on the ferromagnetic alignment is
expressed as

W = µ‖
4πh̄2

m∑
n=1

∑
σ=1,2

[E2
f − ε2

n,σ ] (8)

whereEf is the Fermi energy, which will be discussed in detail in the next section.

Figure 1. The structure of the Fermi surface for an electron gas in a
magnetic sandwich; the upper panel is for a ferromagnetic coupling, in
which the exchange splitting has been shown; the lower panel is for an
antiferromagnetic one.

3. The number of occupied levels and the Fermi energy

In a simplified quantum-well model, atT = 0 K, the momentum in thex-direction is a
scale quantity and quantized, and in other directions it is continuous; this can be viewed
in momentum space, as shown figure 1. The top panel of the figure is for a ferromagnetic
coupling, while the lower panel is for an antiferromagnetic one.

The Fermi surface is a constant-energy surface which separates the unoccupied from the
occupied region ofk-space, which can be described by the upper part of an ellipsoid surface,
the symmetrical axis being fixed in thekx-direction. The long axis is in thekx = 0 plane

and its radius is̃kn,σ =
√

2µ‖Ef /h̄2, and the maximum kinetic energy is at the brim, which

is given by ε̃n,σ ; the short axis is in thekx-direction, and its magnitude is
√

2µ⊥Ef /h̄2.
Every occupied level can be thought of as a two-dimensional electron gas and is represented
by a disc, which is normal to thekx-axis; thekx-coordinate of the disc iskn,σ , which is

evenly distributed between 0 and
√

2µ⊥Ef /h̄2.
For an occupied leveln, σ , sinceEf = εn,σ + ε̃n,σ , it follows that

Ef = 1

2m

m∑
n=1

2∑
σ=1

(εn,σ + ε̃n,σ )

wherem is the number of occupied levels.
The total number of electrons,Ne, can be expressed in terms ofε̃n,σ as

Ne = [S/(2π)]
m∑

n=1

2∑
σ=1

∫ k̃n,σ

0
k‖ dk‖ = [Sµ‖/(2πh̄2)]

m∑
n=1

2∑
σ=1

ε̃n,σ

whereS is the area of the sample andSµ‖/(2πh̄2) is the density of states (DOS) for a level.
On the other hand, viewing in a real space,Ne = 2n0β[Lx +ρPx ], wheren0 is the electron
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density of the spacer for two spins andρn0 is that of the ferromagnetic slabs. Thus, the
Fermi energy is found as

Ef = 2πh̄2n0β

mµ‖
[Nx − (1 − ρ)Px ] + π2h̄2(m + 1)(2m + 1)

12µ⊥β2N2
x

+ 1

2m

m∑
n=1

2∑
σ

1εn,σ . (9)

The number of occupied levels can be determined in terms ofε0
m 6 Ef 6 ε0

m+1. It can be
shown that the summation of the last term on the right-hand side is much smaller than the
other terms and can be neglected. So, in a first approximation, the Fermi energy is, in fact,
independent of the alignment of the ferromagnets. Thus, it becomes a simple electronic
state problem in a quantum-well model [38].

If one letsT = (1/β) 3
√

πµ‖/(3µ⊥n0), c0 = (1 − ρ)Px , then

Ef (Nx, m) = εf

[
2

3

Nx − c0

mT
+ (m + 1)(m + 1/2)

3

(
T

Nx

)2]
(10)

where

εf = π2h̄2

2µ⊥β2T 2
.

The minimum ofEf is determined by the conditions∂Ef /∂Nx = 0 and∂2Ef /∂N2
x > 0,

from which one finds

Nx(m) = T 3
√

m(m + 1)(m + 1/2) ≈ T

(
m + 1

2
+ 1

12m

)
+ O(T /m2)

1Nx = Nx(m + 1) − Nx(m) = T + O

(
T

12m(m + 1)

)
.

On the other hand, the thickness for the discontinuity of∂Ef /∂Nx is determined by the
conditionEf (Nx, m) = Ef (Nx, m + 1), from which one finds

Nx(m) = T

[
m + 3

4
+ c0

3T
+ 1

m

((
c0

3T

)2

− 7

48

)]
+ O(T /m2)

1Nx = Nx(m + 1) − Nx(m) = T + O

(
T

m(m + 1)

[(
c0

3T

)2

− 7

48

])
.

Therefore, from the thickness variation of the minimum ofEf and the discontinuity of
∂Ef /∂Nx , one can conclude that both the Fermi energy and the number of occupied levels
are oscillatory functions of the thickness andT is the oscillation period.

Becauseε0
m < Ef < ε0

m+1, the oscillation amplitude can be found as

Af = ε0
m+1 − ε0

m ≈ 1

mµ⊥

(
πh̄

βT

)2

. (11)

So the fluctuation of the Fermi energy withNx is proportional to 1/Nx . If m becomes
large enough, the amplitude approaches zero. Consequently, the Fermi energy will be a
constant andEf = εf . In this case, one can compare the Fermi energy with that of the
three-dimensional electron gas models directly. For a thin film, the Fermi energy can be
rewritten as

εf = h̄2(3π2n0)
2/3

2µ
1/3
⊥ µ

2/3
‖

.
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For the three-dimensional electron gas,µ‖ = µ⊥ = µe and the Fermi energy and the
wave vector areE0

f and kf respectively. FromE0
f = h̄2k2

f /2µe and n0 = k3
f /(3π2), one

obtains two important relations:

T = π

βkf

√
µe

µ⊥
= π

βkf

µ‖
µe

and µ⊥µ2
‖ = µ3

e

(
E0

f

Ef

)3

. (12)

Because the RKKY oscillation period isTRKKY = π/(βkf ), the oscillation period of
the Fermi energy isµ‖/µe times as much as the RKKY one.

4. Energy band theory

It has been shown that a magnetic sandwich has an intrinsic periodicity and that the period
depends on the ratio of the effective masses in two directions. If the oscillatory coupling has
the same origin as the intrinsic periodicity, thenµ‖/µ⊥ � 1 and a small electron density
n0 should be expected. However, where does the high anisotropy come from? It is difficult
to understand and seems impossible to find the solution from such a simple model. The
reason may be that the lattice potential has been neglected. Its effects and the origin of the
anisotropy should be explained in terms of the energy band theory.

Because the translational symmetry is broken in the perpendicular direction, plus the
boundary conditions, the special effect of the lattice potential should be considered. The
potential missing from sites outside the surface is equivalent to adding a strong electric
field, pointing from the centre to the outside. The electric field makes the electron potential
energy higher on the surface than it is in the middle. Consequently, the electronic structure
of a thin film differs from that of a bulk in the following three ways.

(1) In the perpendicular direction, the eigenvalues of the discrete levels and the gaps
between the two neighbouring levels become larger than they are in an infinite potential
well. As a result, the assumption thatµ⊥ � µe should be reasonable.

(2) Because the eigenvalues of discrete levels increase, the number of occupied levels
should be reduced and the electron population in each occupied level increases. This causes
the Fermi wave vector in the lateral direction to expand outside. Because of the degeneracy
perturbation by the lattice potential, the kinetic energy will deviate from the square dispersion
relation when its wave vector is close to the Brillouin zone boundary. Consequently, the
DOS in this direction becomes much larger. Equivalently, one can expectµ‖/µe � 1.

(3) The electric field induces the first excited states of the Cu atom, the 4p level, to
split, leading some of the p-like energy bands to lower to below the Fermi level. Thus, the
DOS for p-like electrons on the Fermi surface becomes much larger and the s-like electron
density reduces.

If the above analysis is correct, then we can be sure that the lattice potential plays an
important role in the origin of the long periodicity. Hence, a further analysis in terms of
the energy band theory is necessary, which can provide a touchstone. For simplicity, the
effect of the ferromagnetic slabs is neglected and the energy bands of a sandwich are simply
replaced by that of a Cu thin film. The energy bands of both Cu thin-film [39–41] and bulk
material [42] are available, as they have been calculated by several authors. The energy
bands of 19-layer Cu(100) films calculated by Eucedaet al [40] will be used for analysis.
The energy band of bulk Cu calculated by Segall [42] will be used for comparison. Since
the Fermi energy is only affected by the occupation of the sp bands, the following discussion
will be limited to them. The main characteristics which may be associated with the long
periodicity are summarized as follows.
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(1) In the perpendicular direction, the electron energy is discrete and in the lateral
direction it is continuous. Thus, the discrete levels are described by the states in the one-
dimensional Brillouin zone and the number of states is equal to the number of atomic layers.
In the lateral direction, the energy bands are described by the two-dimensional Brillouin
zone (2D BZ). Since the dispersion relations in the 2D BZ for each of the levels are different,
each 2D BZ is connected to only one level.

(2) There are three groups of energy bands which cross the Fermi surface:

(a) 1̄1 bands (from0̄ to X̄);
(b) 6̄1 bands (from0̄ to M̄);
(c) Ȳ1 andȲ2 bands (fromX̄ to M̄).

The gaps between two neighbouring bands depend on what the bands are and their
locations. The gaps at thē0 axis are much larger than those atX̄.

(3) The dispersion relation for the energy bands is very complex and the description of
the effective mass is not suitable. Nevertheless, the comparison of the width of the energy
bands and the Fermi wave vectors between a thin film and a bulk can provide the necessary
information for establishing the DOS of each level.

(a) The width of1̄1 bands is from about 2 to 2.9 eV for the lateral direction and 4.5 eV
in the perpendicular (100) direction, whereas the width of the11 band for the bulk (from
012 to X4′ ) is about 6.1 eV.

(b) The width of6̄1 bands is about 3.7 eV for a film whereas that of the61 band (from
012 to K1) is 9.45 eV for Cu bulk.

(c) The Fermi wave vector in the (100) direction is 1.0kBZ for a film whereas it is
0.79kBZ for the bulk, wherekBZ = 2π/a0.

(d) The Fermi wave vector in the (110) direction is 1.25kBZ for a film whereas it is
0.85kBZ for the bulk.

From the above comparisons, qualitatively,µ‖/µ⊥ � 1 is correct.
(4) The values forȲ1 andȲ2 bands for a film are much lower than the corresponding

ones for63 (p-like) for the bulk. Besides this, all of these bands cross the Fermi surface, are
occupied and are close to each other. They provide a very high DOS on the Fermi surface.
According to the calculation of the DOS, the crystal configuration for 19-layer Cu(100)
films is 3d9.894s0.334p0.79 whereas the atomic configuration is 3d104s1. When the number
of atomic layers increases, though both the number of electrons and the number of energy
bands increase, it can be expected that the dispersion for each band and the occupation will
not change too much. To a very good approximation, when one is considering the number
of occupied levels and the Fermi energy to vary with the thickness of the film, the effect
from the slowly changinḡY1 andȲ2 bands and 4p electrons can be neglected.

From the above energy band analysis, one can draw two conclusions: (a) the density of
states in the lateral direction is much larger than it is in the perpendicular direction; and (b)
the electron density for the s electron, which is responsible for the oscillation of the Fermi
energy, greatly reduces.

In order to give a quantitative estimation for the oscillation period, according to [40],
one can take the density of the s electron asn0 in our quantum-well model, which is only one
third of the value for the bulk. Consequently, following the free-electron model, the Fermi
wave vector of a bulk can be calculated askf = (3π2n0)

1/3 = 0.79(1/3)1/3 = 0.55kBZ.
From the energy band calculation, the Fermi wave vector in the lateral direction can be
estimated askF = 1.1kBZ. If the Fermi energy is the same for the two systems, then
µ‖/µe = (kF /ff )2 = 4, from which the period is found to beT ∼ TRKKY (µ‖/µe) ∼
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4TRKKY . Therefore, the speculation regarding the long periodicity is reasonable as regards
the physics.

5. The explanation of the inverse photoemission experiment

The inverse photoemission spectra for Cu on Co obtained by Ortega and Himpsel (see [18])
showed that the photoemission intensity atEf oscillated with the numbers of Cu layers
periodically, and that the oscillation period was nearly the same as that of the oscillatory
coupling in a magnetic sandwich of Co/Cu/Co. This is the first time that it has been
shown that there is a connection between the oscillatory coupling and the quantum-well
states from an experiment. An explanation of the oscillatory photoemission intensity at the
Fermi energyEf would be of interest. Originally, on the basis of a study of the bulk band
structure, the authors of [18] suggested that (1) the oscillatory intensity atEf could be due
to the modulation of the fast-oscillating Bloch wave by an envelope function, and that the
k-vector of the latter is given by the difference between the Fermi wave vectorkf and the
wave vector of the Brillouin zone boundary,kBZ; and (2) the origin of the quantum-well
states lay in the spin-dependent boundary conditions at the interface with the ferromagnet,
and that thus only minority-spin quantum-well states could form at the Fermi level for the
x-direction since the majority-spin conduction electron states in the spacer could be coupled
to the majority-spin states in ferromagnet.

In this section, it will be shown that the same experiment can be explained in terms of
an intrinsic period of the quantum-well states. As a result of the bremsstrahlung effect [43],
the inverse photoemission intensity not only depends on the density of unoccupied states at
energyEf inal , but also depends on the energy difference between the initial energy of the
captured electron,Einit , andEf inal . In the bulk, the Fermi energy is a constant and can be
referred to as a fixed point.

In terms of a simplified quantum-well model, the quantum-well states are assumed to
arise from the structure confinement of the sandwich sample, but not from the potential
difference at the interfaces. From the last two sections it has been shown that the Fermi
level is not a constant; thus it cannot be used as a bonding energy reference level in
photoemission measurements; furthermore the Fermi energy itself is an oscillating function
of the number of spacer layers. In order to explain the experiment, the quantum-well states
in the Cu overlayers on the ferromagnetic layer should be established beforehand. They can
be obtained in the same way as before. The width of the quantum well isa, with a = b+c,
whereb andc are the thicknesses of the Cu and Co layers respectively. The s–d interaction
Hamiltonian is written as

Hs−d = ±V0 δ(x − b) (13)

where V0 = −SzJ0β; the positive and negative signs have the same definition as in
equation (2).

The eigenfunction is assumed to be

9(x) =
{

B1 sinkxx 0 6 x 6 b

B2 sinkx(x − a) b 6 x 6 a.
(14)

From the connection conditions

B1 sinkxb = −B2 sinkxc

B2 coskxc − B1 coskxb = ±2µ⊥V0

h̄2kx

B1 sinkxb
(15)
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one can derive

sinkxa = ±2µ⊥V0

h̄2kx

sinkxb sinkxc. (16)

On comparing equation (16) and equation (4), the quantum-well states in the Cu
overlayer are seen to be exactly the same as those of odd parity in a sandwich with
ferromagnetic coupling. Therefore, the spin splitting also occurs in these levels, as observed
in many photoemission experiments.

From the eigenvalues, the Fermi energy is found as

Ef = 1

me

[
2πh̄2βn0

µ‖
(Lx + ρPx) +

∑
n,σ

εn,σ

]
(17)

which is the same as in equation (9).
Because there is only one ferromagnet, the oscillation behaviour of the Fermi energy

arises from the periodicity of the quantum-well states. Therefore the oscillation of the Fermi
energy is a general characteristic of the thin film.

Figure 2. (a) The Fermi energy, on the left-hand axis, and the number of occupied levels
(NOL), on the right-hand axis, as functions of the number of spacer layers; the open circles
stand for the locations of the spacer monolayers. In this figure, the density of the s electrons
is n0 = 1

3(4/a3
0), µ‖/µe = 2.55 andµ⊥/µe = 0.154, the period isT = 4.71 monolayers, and

Px = 24 monolayers. (b) The inverse photoemission intensity at the Fermi energy level for a
Cu/Cu sample, shown as a function of the number of spacer layers; the intensity is in arbitrary
units [18].

Because the Fermi energy is not a constant, the photoemission intensity will sensitively
depend on its variation and it should not be used as a reference point for measurements.
Therefore, the period variation in the observed inverse photoemission intensity is mainly
caused by the period variation of the Fermi energy.

The Fermi energy and the number of occupied levels as functions of the number of
spacer layers are shown in figure 2(a). According to the energy band theory, the density
of the 4s electron is 0.33 per atom, son0 = 1

3(4/a3
0). If µ‖/µe = 2.55 is assumed and,

following the second expression in equation (12),µ⊥/µe = 0.154, the period isT = 4.71
monolayers.Px = 24 monolayers andρ = 0.24 are assumed.

For a comparison, the inverse photoemission intensity at the Fermi energy level for a
Cu/Cu sample is shown in figure 2(b).

6. Conclusions

Using a simplified model, the intrinsic periodicity associated with the quantum-well states
both in a magnetic sandwich structure and in a sample containing only a ferromagnet with
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an overlayer is investigated. It is found that this periodicity should be completely attributed
to the quantum-well states themselves but not to the ferromagnets. The reason for this is
that the values of the discrete levels are inversely proportional to the square of the width
of the quantum well, which is weakly affected by the existence of the ferromagnet, and the
number of electrons must be proportional to the well width; in order to keep the total energy
at a minimum, the number of occupied levels is forced to increase with the well width in a
periodic way. The periodic behaviour of the number of the occupied levels leads the Fermi
energy to change periodically too. The period is given byT = (1/β) 3

√
πµ‖/(3n0µ⊥).

According to the energy band theory of thin film, it is found that the effects of the lattice
potential of the thin film can result in the electron DOS being highly anisotropic in the two
directions and the number of s electrons reducing. Qualitatively, the energy band effects of
the thin film are responsible for the long periodicity of the Fermi energy oscillation. One
can use this result to explain the inverse photoemission intensity at the Fermi energy level,
which is oscillatory with spacer layers.
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